智能视频分析如何改变零售商店

2021-08-24 14:34

准确统计和分析客户流量的能力使零售商能够确保高效运营。来自商店入口处捕获的镜头的IVA以及捕获分析的其他传感器提供实时交通数据。IVA根据着装要求检测以及员工面部和生物识别技术帮助区分员工和客户。通过定期分析这些数据,零售商可以确定流量模式,从而根据客户需求提高人员配备水平。推算员工与客户的比例有助于零售商决定在商店的不同部分重新分配员工或在人流量大的日子和时间增加员工,并在人流量不足的时间减少人手过多的成本。

队列管理

使用IVA可以避免繁忙的结账和排长队。AI可以自动分析联网视频片段,并在结账柜台检测到高流量时发出警报。基于对过道和货架上连接的摄像头和传感器的即时分析,人工智能可以帮助预测结账时排长队、人满为患和客户激增的可能性。这可以帮助零售商提前准备开设更多计费柜台。IVA还可以自动向员工发出警报,以进一步加快结账流程。特定的队列管理算法可以为队列中的每个客户计算特定的等待时间,因为它可以延迟为客户提供服务。这种洞察力有助于识别问题、优化队列数量并将客户重新分配到不同的队列以加快计费。

中国的Futuremart和美国的AmazonGo等商店采用IVA技术更进一步,实现了完全无收银员和无现金的自主商店。进入时的面部识别、购买的二维码和用于计费的支付应用程序,以及遍布商店的传感器和摄像头,提供了一种无需排队的体验。Futuremart甚至还配备了HappyGo计量器,可以根据顾客的笑容为他们提供更大的折扣。

产品识别

现在的山寨产品太好了;几乎不可能把它们和真品区分开。伪造者已经熟练地自己使用人工智能,这使得他们更容易设计产品冒充正品。世界海关组织(WCO)估计,全球7%至9%的贸易与假冒产品有关,使其本身成为一项有利可图的业务。但销售假冒产品可能会导致收入、声誉和未来销售的损失。这使得零售商专注于使用人工智能来检测假货变得至关重要。

图像识别和目标检测技术可以帮助零售商规范商店检查,并得到一致的结果。使用深度学习神经网络,可以比较货架上的产品,确定真伪。神经网络可以通过图像训练识别出与原始产品有任何单一或不明显差异的产品。通过这些深度学习算法运行的IVA,可以立即发现在艰苦的手工检查中出现的失误。

Entrupy和AuthenticVision等公司一直致力于利用IVA、先进的数据科学和光学机器学习来实时识别假货,并提供高质量的用户体验。然而,一个已知的限制是没有万无一失的伪造检测器。即使是最准确的,也不可能通过所有的测试。

IVA对零售业意味着什么

随着时间的推移,IVA收集视频数据,为企业提供智能,以了解趋势,做出明智的决定,并制定强有力的战略。在最大程度上减少客户的宝贵投入,为客户带来愉悦的体验。它有助于在网上和实际存在之间架起桥梁。随着越来越多的企业利用人工智能主导的IVA,零售领域正在发生变化。IVA将视觉敏锐度与分析能力相结合,将信息编目,为零售商提供丰富的即时洞察力,弥合人为错误的鸿沟。



10秒快速发布需求

让物流专家来找您