零售格局正在发生前所未有的变化。实体零售商面临来自在线零售选择的激烈竞争,而且这似乎是不公平的。新时代的购物者精通技术和商店,每次疯狂购物都要求更多。技术的普及继续增长并影响购物的更多方面,提供个性化体验来赢得智能客户的忠诚度。零售技术不仅有助于更好地了解客户,还有助于破解商店的缺点。它提出解决方案,减少收缩,并确保更高的投资回报率。这种分析是通过实时智能视频分析(IVA)和边缘计算实现的。
仔细观察零售商使用IVA驱动的人工智能的不同方式,可以深入了解智能零售的运作方式。
欺诈及盗窃侦查
欺诈和盗窃是零售业面临的两大挑战,只有通过持续的监视和执法才能遏制。根据美国零售联合会发布的第29届年度全国零售安全调查,2019年美国的盗窃和欺诈损失总计617亿美元,远远高于前几年。相应的全球数字为1000亿美元。据估计,欺诈和盗窃占每年零售萎缩的近三分之二。面对如此惊人的数字,零售商们总是保持警惕,使用传统方法和先进技术相结合。
在商店入口和出口点连接到IVA系统的摄像头有助于捕获人数,并使用生物识别技术和面部识别软件来识别访问商店的顾客。当客户涉及欺诈或盗窃时,面部数据将被证明以备将来使用。考虑一下日本初创公司Vaak的AI盗窃检测系统,据说该系统通过处理通过在IVA上运行的深度学习算法分析的大量数据,在识别潜在和实际欺诈和盗窃方面的准确率超过80%。当被阻止的顾客试图进入商店采取纠正措施时,系统可以立即识别并发出警报。
然而,欺诈和盗窃检测不仅限于入口点。整个商店都有犯罪的可能性,包括在付款和结账时。例如,码隆科技的RetailAIProtect由一个头顶固定半球摄像机组成,它捕捉未扫描和可疑条形码项目的镜头,并将信息发送到后端AI模型进行解码。如果系统检测到错误扫描或条码票据切换方面的违规行为,则会立即发出警报。
IVA可以在几分钟内轻松查看来自多个摄像机的镜头,而不是数小时或数天的手动查看,以调查商店的损失和犯罪。操作员可以使用过滤器来搜索与指定描述匹配的人或物体,提取关键细节,收集证据并加速调查。
过道管理
沿着零售店的过道可能会发生很多事情。从找到客户一直在疯狂寻找的合适商品,到因缺货导致的糟糕购物体验而彻底受挫,有效的过道管理可以决定销售的成败。服装巨头H&M使用人工智能通过分析购买和商店收据来保持流行商品的库存。通过深入了解受欢迎的过道、客户在每个过道中的停留时间以及通过IVA捕获的客户人口统计数据,零售商可以增加快速流动产品的货架库存,改善商品销售,并提供即时促销以增加收入并提供诱人的购物体验。
用于过道店内视频的分析技术还可以帮助店员记录和了解客户的购买类型以及他们的平均消费和阅读情绪并识别客户的不满。所有这些输入都有助于工作人员照顾那些可能需要更多关注的购物者。例如,优衣库的精选服装店设有人工智能UMood售货亭,通过研究顾客对不同颜色和款式的反应来确定他们的情绪,从而为优衣库提供更好的过道管理。
客户情报
在以客户为中心的商业世界中,零售商竭尽全力吸引客户。客户智能(CI)通过整合和分析所有可用的客户数据来改善沟通、研究和影响购买行为,并通过预测性建议推动更好的销售,从而为零售商提供竞争优势。在2018年哈佛商业评论分析服务与几家大型IT公司合作进行的一项研究中,83%的受访者表示,在正确的时间将数据转化为可操作的见解的能力对于客户体验至关重要。尽管如此,只有22%的人在这方面取得了成功。
观察有多少客户进入以及何时进入是一项主要的分析挑战(?)。当分析变为洞察力时,它们可以提高客户体验的相关性,确保零售商与客户产生共鸣。这些分析提供运营和品牌洞察力,以及CI的其他几个方面。CI提供了做出购买决策的环境,可用于提高投资回报率。
在过去十年中,几家零售商也一直在试验MagicMirrors的增强现实概念。这些镜子中的这些摄像头具有延时显示功能,允许顾客在试穿衣服时转身并看到自己的360度视图。纽约曼哈顿RebeccaMinkoff旗舰店的数字墙不容错过。交互式镜子不仅可以通过使用IVA帮助虚拟试穿衣服,还可以为客户提供与整体外观相配的配饰建议。他们还可以点一杯饮料,并在需要时请求工作人员协助。试衣间的连接镜子还允许您浏览可用的系列并订购合适的尺寸。
店内员工与顾客比率