机器学习在商业通信中的 9 种用途

2021-08-24 14:21

人工智能在商务沟通中扮演什么角色?人工智能结合了机器学习、深度学习、自然语言处理以及更多此类技术,可有效理解、分析和处理数据以提供有意义的见解。近年来,人工智能已被用于促进更好的沟通。以下是人工智能在通信中的使用方式:

客户服务聊天机器人

聊天机器人改变了企业和客户之间的互动方式。客户无需等待很长时间,希望代表尽快回复。这些聊天机器人不仅可以在商业网站上找到,还可以在其他通信渠道上找到。您可以为Facebook Messenger开发聊天机器人,以响应该平台上的关注者。使用聊天机器人还降低了客户服务部门的支出成本。

智能广告系列

人工智能解决方案可以创建智能营销活动,并在目标受众中推广品牌。客户根据他们的在线数据进行细分和分类。这使您可以为每个客户群和每个客户创建超定向广告。它可以增加将潜在用户转化为成功的潜在客户和客户的机会。

过滤电子邮件

我们需要告诉您垃圾邮件的滋扰吗?他们不断来,不是吗?除非您拥有基于人工智能的过滤器,否则将有效地阻止网络钓鱼电子邮件并防止您的员工成为网络攻击的牺牲品。尽管Gmail很有效,但使用您自己的基于机器学习的过滤器和垃圾邮件软件可以更好地抵御网络钓鱼攻击。

发送自动智能回复

自然语言处理有助于理解文字和文字背后的意图。这可以使用人工智能和机器学习自动化,而不是要求员工回复每封邮件。自动智能回复使用适当的措辞来构建每封电子邮件的回复。

员工自助服务

与聊天机器人与客户沟通的方式类似,可以为内部客户(即员工)设置相同的帮助台系统。商业应用中的机器学习可以帮助员工通过联系聊天机器人而不是人工代理来回答他们的问题。这为两组员工节省了时间。

如何将机器学习应用于商业问题?

如果您知道如何使用机器学习,它可以解决多个业务问题。当然,采用AI和ML有其自身的一系列挑战需要应对。这就是为什么大多数企业依靠离岸机器学习咨询公司来帮助采用过程。

预测与决策:您需要确定是否要使用机器学习进行预测或决策。将机器学习用于错误的目的将导致损失大于利润。数据处理和分析:虽然数据丰富,但并非所有数据都有用。数据首先需要清理,然后才能进行处理和分析。即使是非结构化数据也需要去除重复项。允许错误:请记住,即使在行业中使用机器学习应用程序时,也有出错的机会。没有什么是绝对的,机器学习也不是100%准确的。它只能降低人为错误的风险。但是如果你输入的数据本身是错误的,机器学习软件就无能为力了。优先问题优先:在为机器学习模型开发原型时,您需要首先关注问题领域。不要将您的资源浪费在将ML用于已经有效的事情上。调整和更改是必要的:您需要不断进行必要的更改和调整,以便基于ML的系统提供您想要的结果。

聘请ML咨询团队将确保他们解决这些问题并帮助您实现目标。

机器学习在商业通信中的应用

以下是机器学习在商业通信中的一些用途:

电子邮件营销

您是否知道垃圾邮件在2019年占电子邮件总流量的57%?但多年来,电子邮件营销一直是一种有效的策略。你如何平衡这两者?您需要创建质量更高的电子邮件,并特别关注内容,以避免被过滤为垃圾邮件。

10秒快速发布需求

让物流专家来找您