只有当数据平台不断实现知识输出,智能平台不断反馈高质量协同数据,构建起循环增长飞轮,才能实现高质量行业数据的积累。大模型的输出落地,优先在数字化领先的场景落地。数字化基础都较为扎实,会更利于大模型能力的释放。随着快递物流行业的数字化进程不断深入,多年来,物流行业发展积累了宝贵的数字化经验,在数字智能化上居有领先地位,可适宜于大模型的落地。对于大多数物流企业来说,自建大模型不仅周期长,效率低,成本高,因此,它山之石,无疑是构建自己企业专用大模型的一种“最优解”,除了大模型提供者具有复杂场景充分检验的大模型融合解决方案,还需要物流企业在数字化上做好基础。腾讯大模型在数字货运福佑上的探索落地,就是根据以上这一原则:福佑卡车无疑是数字货运领域的佼佼者,福佑深度介入整个货运交易链条,将其标准化、数字化重构,天然附带海量场景数据。据福佑卡车公开披露的信息,8年时间内,该公司积累了1.9亿关键节点数据,200亿+多维度行为数据,这些高质量数据恰好能为大模型的落地提供技术支撑。大模型在物流上的应用,以数据为基础。数据作为“养料”,决定了大模型的底色与能力边界。大模型之所以称之为“大”,就是因为它庞大的数据量和复杂的参数。在训练和优化大模型的过程中,高质量数据是核心生产要素,要想训练出精度极高的行业大模型,所需的不是互联网上免费公开的数据,而是行业特定的场景数据,物流B端的产业数据是从业者真实交互数据,样本少、分布不均,极难获得。因此,大模型,除了训练标准大模型通用的数据外,还必须将物流业自己的数据纳入其中,例如,京东言犀在训练时便使用了70%通用域数据与30%京东数智供应链原生数据。
传统数据库面对大模型训练的图片、音频、视频等非结构化数据,显得捉襟见肘,专门针对此类场景的向量数据库更显得弥足珍贵,因为向理数据库具有极为精细、复杂且庞大的数据洞察诉求。当前各家大模型在算法层面区别并不大,并且具有同质化的趋势。在此背景下,通过物流本身的场景和垂域数据优势建立行业大模型,训练数据就成了真正区分且影响行业大模型性能的重要因素之一。所谓的数据,来源于商流、物流以及金融流,一个物流公司,具有获得这三类数据的基础,更为重要的是物流原始数据只有在交互中才会产生,并且是动态而非静态的数据,因此,经过二十年发展的物流业,当然拥有丰富真实的产业数据。大模型加入物流企业独有的场景数据,能快速精调生成专属模型,不同的物流企业,在数字供应链领域的细分深耕,为产业大模型的落地提供了差异化的数据优势与能力优势。源于产业和内部业务场景的“人无我有”的数据与能力,最终带来了物流大模型的差异化。更进一步,可发力大模型与数字孪生技术深度结合,推进物流技术迈向数字原生时代,逐步形成AI自动生成供应链解决方案:数字孪生验证出全局最优方案,最终用于实践的完整闭环。
2、场景
技术本身是没有办法直接产生价值的,技术只有放到场景里才能够产生实际的价值。物流作为先天更适合新技术渗透的场景之一,对大模型的应用,正是为数不多可以看到实际落地产业效果的赛道。
数字物流作为传统物流数字化转型后新的经济形态,涵盖快速接单、高效分单、实时定价、轨迹跟踪、智能应答等多个应用场景。物流是AI落地最重要的产业场景之一,也是大模型落地的重要产业场景。技术的演变与发展,是离不开具体场景的聚焦,在不同的行业、不同的场景下,如何利用好并且更精准地发挥技术的作用才是更困难的事情。在大模型产业化的过程中,场景一定是必需品,从现阶段来看,物流可能会是那个相对更加“完美”的选择。物流本身承担着数字与物理世界的现实链接,具有丰富的内在场景。单一大模型本身无法产生直接价值,技术只有放到场景中才能产出实际价值,更准确地说,只有在自己的场景,才能培养出适合自己的大模型应用,而物流,是具有丰富的场景,并相对高度数据化的行业。近期,在华为、百度、腾讯、科大讯飞等企业的参与下,大模型的应用场景有了越来越多的实践案例。京东、阿里推出电商物流头部企业自己的大模型,菜鸟供应链也顺势发布了基于大模型的数字化供应链产品“天机π”。这些更接近于物流场景,但落地物流,还需要与物流具体场景结合,需在物流企业内部的关键场景完成历练和实践。当模型训练完成之后,我们在输出时就可以针对不同场景,做到更为精准的变频。智慧物流具有知识密集型、任务型产业场景,大模型聚焦其中,可解决真实产业问题,企业在技术层面设法将大模型运用到物流的具体场景中来降本增效,也将成为趋势。
大模型需要的数据包括场景化数据,物流具有长链路、复杂协同、更多动态数据回流的场景,成为了大模型最好的“练兵场”。AI大模型需要在物流场景中反复与充分测试,锤炼技术、升级迭代和培育市场,因为,现实需要的是致力于在具体物流场景中100%解决问题,而不需要在100个场景中解决10%问题。AI大模型不仅要顾及到行业专业知识,还要对上下游个性化业务场景具有深入理解,从细微业务场景的颠覆性转变的积聚,从而推动场景到产业的全面进步。物流改造是宏大命题、长周期赛跑,但离不开一个个具体业务场景的精细化覆盖,围绕人、货、场三个核心要素展开场景,对物流场景应用一点点吃透打通。大模型深度融入物流服务供应链全场景,可实现多模态大模型对物流场景内容生成和创作的交互升级,解决行业痛点问题,要持续洞察和验证真实的业务场景,探索大模型在物流行业的多场景应用。大模型在物流领域成功落地的关键还在于,能否应用于具体场景,以解决效率优化问题;能否达到提质降本增效的目的,能否创造商业价值。大模型可以重塑物流生态,改变各个场景的运作方式,进一步解放生产力,帮助企业实现降本增效。谁能率先在物流业务场景中应用好大模型为核心的人工智能技术,谁也将有望获得未来的最大红利。